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ABSTRACT

As the need for personal authentication increases, many people are turning to biometric
authentication as an alternative to traditional security devices. Concurrently, users and
vendors of biometric authentication systems are searching for methods to establish system
performance. This paper presents a model that defines the parameters necessary to
estimate the performance of fingerprint authentication systems without going through the
rigors of intensive system testing inherent in establishing error rates. The model presented
here was developed to predict the performance of the pore-based automated fingerprint
matching routine developed internally in the research and development division at NSA.
This paper also discusses the statistics of fingerprint pores and the efficacy of using pores, in
addition to the traditionally-used minutiae, to improve system performance. In addition,
this paper links together the realms of automated matching and statistical evaluations of
fingerprint features. The result of this link provides knowledge of practical performance
limits of any automated matching routine which utilizes pores or minutia features.

1. Introduction

This paper provides a statistical analysis of fingerprint features, as well as a description and
comparison between automated and manual (forensic) fingerprint matching techniques, which
includes the identification of certain critical parameters involved in any automated matching
technique. The authors use these critical parameters to determine the expected performance of
any automated fingerprint matching routine, and apply their model to a specific system.

This paper establishes the performance estimates for a pore-based automated fingerprint matching
routine that is under development in the research and development division at NSA. Many factors
influence the performance of such a system; some have been explored previously in either studies
of automated matching systems or in the forensic arena, but there has been little effort to tie
together information from both areas to estimate performance. In order to assess performance,
feature uniqueness and reliability and automated matching parameters must be understood.
Literature from law enforcement and criminology tends to focus solely on the uniqueness of a
configuration of fingerprint features, and literature concerning automated systems deals with
processing and matching techniques without regard to feature uniqueness or variation of matching
parameters. Neither source has addressed feature reliability, although knowledge of all these
issues is intrinsic to the development of a sound fingerprint matching technique.

Currently, the performance of biometric systems is gauged mostly by error rates. Errors in a
fingerprint recognition system can be one of two types. A false accept occurs when an
unauthorized user is identified as an authorized user and is therefore accepted by the system. A
false reject occurs when an authorized user is not recognized as such, and is rejected by the
system. In order to describe the performance of a system, both the FAR (false accept rate) and
FRR (false reject rate) must be determined. These FARs and FRRs are accepted currently as the
metrics by which biometric system performance is judged today.

Although error rates serve as a good indicator of system performance, the most common method
of determining FARs and FRRs requires extensive testing, which is very time consuming. If the
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system parameters change, then the testing must be redone. One maotivation of this paper is to
provide an alternative, more immediate, method for projecting system performance. In this paper,
a model for fingerprint matching is developed that encompasses both uniqueness (from forensic
analyses) and parameters needed for automated matching techniques. This probabilistic model is
generated using knowledge acquired from several sources: existing models for uniqueness of sets
of fingerprint features developed in forensic studies, a physiological model based on
morphogenesis of fingerprints, a mathematically derived matching scheme, and results from
measurements of real fingerprint images. The resulting model is intended to simulate a real
matching system and provide the ability to estimate error rates for a given set of system
parameters.

Inherent in developing this theoretical model, and especially in gauging the performance of the
internally developed system at NSA, is exploring the efficacy of using pores to match fingerprints.
Automated matching techniques traditionally have used configurations consisting of medium
resolution features, such as branch points (bifurcations) and end points of epidermal ridges, but it
is also possible to implement pores, which are high resolution features. The NSA internal system
is one of only a few systems to date which utilizes pores as features to match fingerprints.

2. History

Branch and end points of epidermal ridges were used by Sir Francis Galton in 1872 to develop a
probabilistic model of fingerprint individuality, and they have been used since then in both
forensic (Cummins and Midlo, 1943) and automated matching (Blue, Candela, Gruther, Chellapa,
and Wilson, 1994; Hrechak and McHugh, 1990). These Galton features, or minutiae, contain
unique information that enables their use in probabilistic analyses. Each Galton feature has a
specific type, i.e., branch point or end point, a unique location on the fingerprint, and a specific
orientation (Stoney and Thornton, 1986). The orientation can be defined for an end point, for
example, as the approximate tangent angle to the ridge ending.

Most probabilistic models to date have utilized Galton features exclusively; two of these models
will be presented in this paper. The first model, published in 1977 by James Osteitialaf, the
University of lllinois, determines the probability of occurrence of a certain configuration of
Galton features in a fingerprint. Two years later, a member of Osterburg’s team, Stanley Sclove,
published a paper presenting the occurrence of Galton features as a two-dimensional Markov
model. Both of these models can be adapted to use pores instead of Galton features.

Pores have been used historically to assist in forensic matching. Although most matching
methods have emphasized minutia comparisons and used pores as ancillary comparison features,
the ability to match prints based on pore information alone has been documented (Ashbaugh,
1983; Locard, 1912; Stosz and Alyea, 1994). The concept of using pores to match prints has been
essentially dormant during the rise of automated fingerprint recognition systems.

3. Physiology
The uniqueness of a configuration of pores depends on several factors, such as the number of

pores involved, their respective shapes and sizes, the locations of these pores with respect to each
other, and so on. These factors are all a function of morphology; thus, it would be helpful to
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discuss briefly the genesis and formation of fingerprints, as well as the implications imposed in
the development of pores.

Pores are formed where sweat glands in the subcutaneous layer of the skin generate sweat ducts;
these sweat ducts grow through the subcutaneous layer and dermis to the epidermis, where the
open duct on the skin’s surface presents itself as a pore (Webster, 1992). (See Figure 1)
According to a 1973 study on skin ridge formation (Hirsch and Schweichel, 1973), sweat glands
begin to form in the fifth month of gestation. The sweat gland ducts reach the surface of the
epidermis in the sixth month, forming pores.
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Figure 1. Physiology of the skin.

The epidermal ridges are not formed until after the sixth month; then, the pattern which has been
forming in the glandular fold region is transferred to the epidermis. Hirsch and Schweichel
concluded that several forces affect the epidermal pattern formation; one of these forces is the
stabilization that occurs “when sweat gland secretion ducts open on to the surface, at regular
intervals, in the papillary ridges.” These openings of the ducts on the surface are the pores, and
the regularity of their appearance plays a significant part in the uniqueness of pore configurations.
Once these pores form on the ridge, they are fixed at that location. Considerable research has
shown that pores do not disappear, move or spontaneously generate over time (Locard, 1917).

3.1 Model of Pore Spatial Distribution

In order to study the spatial distribution of pores, it is helpful to imagine a fingerprint based on an
underlying lattice structure of sweat glands separated by distdnceFurthermore, pore
distribution is assumed to be purely homogeneous and isotropic as a result of sweat glands being
thus distributed (See Figures 2.a and 2.c). This first order approximation to actual pore formation
is based on the assumption that the primary function of pores is heat transfer; therefore, pores
should be evenly spaced. Matching a print with this kind of distribution would be trivial; if any
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pore in the first print matches any pore in the second print, then all pores match (neglecting
rotation effects).

d c

Figure 2. Lattice model for sweat gland/pore placement on the fingex, pores are represented in

a lattice formation. Irb, the lattice of pores is overlaid on a real fingerprint structures, isome

pores must be moved to comply with the ridge structdrns;the resulting lattice with small random
deviations added to some of the members. In a lattice formation, the positions are entirely
deterministic. Irc andd, the pores are distributed stochastically over the surface of the finger.

The lattice model must be adjusted since the formation of epidermal ridges constrains pores to
appear on them. The lattice is modulated by the underlying ridge structure (See Figures 2.b and
2.d); however, a certain degree of regularity remains. Assume that each pore is located in a
“sweat gland unit,” where the units occur side by side on a ridge. Furthermore, assume that the
position of the pore inside the sweat gland unit is a random variable which is uniformly
distributed over the sweat gland unit dimensions.

A comparison of real and modeled pore spatial distribution is explored in Figure 3. Here, a
fingerprint is shown ina, with pore location information extracted and displayedbin A
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rectangular lattice model is shown dnandd is a modification oic which allows a small degree

of random variation in the lattice point positions. The next imagdepicts a lattice with an even
greater degree of variation in the pore positions. Note thetdhande, no ridge modulation has
been performed and it is assumed that the underlying ridge structure is purely unidirectional
(either vertical or horizontal rows of ridges). Unlideande, for f, the points were not constrained

by a lattice structure in their positioning. The position of each point was considered to be a
random variable with a uniform distribution (over the dimensions of the image). Therefore, an
element is equally likely to occur at any location within the image. The real spatial pore
distribution, inb, is more similar to the point distribution i@thanf; thus, a model based on a
uniform probability distribution for the pore positions is not accurate. In fact, the magnitude of
small random perturbations added to each lattice location should be quite small based on
inspection of the images in Figure 3.

Although regular spacing of sweat glands within a ridge is assumed to be the norm, one must
allow for the possibility of an absent sweat gland. Along with the randomness of pore positions
within the existing sweat gland units, physiological omissions of sweat glands contribute to the
deviation from the expected distance between nearest neighbor pores (Okajima, 1975). These
omissions are evident in Figures 3.a and 3.b.
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Figure 3. a Original image.b. The position of more than 400 pores within a fingerprint image.
Lattice of pointsd. Lattice of points with random variation in position (within unit cet).Lattice

of points with larger allowed position variatioh.Plot of a set of points with positions generated
from uniformly distributed random variables (uniformly distributed set of poingspnd h -
fingerprint segment with more uniformly spaced pores #han

Before progressing further into a discussion of system performance and model derivation, it is
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important to consider how a matching routine works, especially since the matching routine is a
critical component of any recognition system.

4. Automated Matching Principles

Consider the problem of comparing two different fingerprint sub-segments selected from
complete prints. The first segment is obtained from a known user at the time of enrollment, or
registration, into the system. The second segment results from a live-scan acquired for the
purpose of verifying a user’s identity. When the two segments are compared, there are two
possible outcomes: The live-scan segment either matches or does not match the registered
segment.

Figure 4. Fingerprint features. In, features of minutiae points are demonstrated. In this case, both
M, and M, are end points with orientation defined as the direction of ridge flow at the end point.

Knowing the relative positions of Mand M, is sufficient to determine the degree of rotation

between sets of images. The features of pores, their relative position (defined at the center of mass
of the pore), size, and shape are seen in laoimd b. Using only position information, a set of
pores is unique.

An enrollment procedure is used to extract pertinent information from the fingerprint and store the
information to a template (or feature vector) which then represents the user. When matching is
based on minutiae or pores, the template consists of vital information about these features. In the
case of minutia points, knowing the relative position, orientation, and type (branch or end) of each
minutia in the set is sufficient:

minutia features: {(£,01,Ty), (P2,0,.T,), ... (Rue.Cume Tve)

where there ar® g minutia enrolledP is the position@ is the orientation, and is the type. For
pores, the position relative to a local reference point, size, and shape could be stored:

pore features: {(pmMy,Sy), (P2M,S)), -+ (PE:MpESPE)}
wherePg is the number of enrolled poreg,is the position (defined as the center of mass of the

pore),mis the size, andis the shape. See Figure 4, which is a high resolution fingerprint image,
for examples of fingerprint features.

Whether pores or minutia are the basic features, it is possible to use a subset of the full feature set,
(for instance, the location only) to represent the fingerprint. Authentication is then reduced to a
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comparison of two sets of points in space and deciding if they match well enough:

enrolled features: §f¢ f1 o..., Nc g
comparison features: {f f; ¢..... ke g

whereNEg is the number of enrolled features (pores or minutiae)gd the number of live-scan
or comparison features (pores or minutiae). Figure 5 shows some basic matching concepts.

—X, Image A (enrolled image) —X> Image B (comparison image)

1 (X0:Yo) y
Oe r > fl,e

L

(X1Y1)

1:Z,e .
(X2’y2) fs’e Y
(X3,Y3)

Figure 5. Basic matching principles. The concept of a search area representgdivoghown.
Also, measurement is based on relative positions as opposed to relying on an absolute coordinate
system. Feature,f, which corresponds tg)f; is a feature (local origin) which is used to establish

relative positions of other features.

An important step in matching is determining a common reference point or origin in each of the
print segments. For example, a particular minutia point may be used as a local origin from which
to measure the position of a set of nearby pores. This minutia point must be properly identified in
both images before the pores can be matched.

4.1 Pore Extraction Technique

The method used to extract the pores as fingerprint features is critical to the matching routine.
The pore’s position, size and shape are features which make it distinct from other objects in an
image. Techniques used for the fingerprint data capture can be used to enhance the pore
information. For example, high resolution scanning and manipulation of the gain and contrast
camera controls can highlight the pores. The position of the pore is determined by processing the
gray scale fingerprint image and transforming it to a skeleton representation. By applying models
and processing routines to the skeleton to the skeleton of the fingerprint image, the pore locations
can be extracted. Pores are transformed into isolated and connected short lines in the skeleton
image. Given this information, the size of the pore can be determined by region growing routines
operating on a binary version of the fingerprint image. More details can be found in references
provided in the appendix (Stosz and Alyea, 1994; Stosz and Alyea, 1995).
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4.2 Scanning Resolution

Some parameters become critical to the matching routine. For instance, the resolution at which
the fingerprints are scanned determines the accuracy of feature location measurements.
Inherently, there may be only one pore in a given 1 mm x 1 mm section of print, and at 1000 ppi
(pixels per inch), this section is represented by approximately 40x40 (1600) pixels. In
comparison, at a scanning resolution of 500 ppi, the same segment is represented by 20x20 (400)

pixels. Therefore, the probability of another 1 l%ﬂegment of print matching with respect to

pore position is either 1/1600 or 1/400 depending on the scanning resolution. It can be seen that
the false accept error rate will be reduced at a higher scanning resolution at the cost of an
increased false reject error rate.

4.3 Feature or Search Area

The scanning resolution issue can be made invariant by defining an absolute area to be associated
with each feature (a feature area or search area). For instance, the location of a pore in the
enrolled print segment may be determined to be (x,y), but in the corresponding live-scan segment,
its location may be shifted some distant@s a result of rotation, plasticity, or other distortion.

For the purpose of matching these two segments, a search gfgalx, x+Ax],[y-Ay, y+Ay]) as

seen in Figure 5, can be defined such that if the feature is witHime features match with respect

to position.

The size ofz is a parameter that influences the performance of the system (decrEasimduces

a decreasing FAR and increasing FRR; increagimgoduces increasing FAR, decreasing FRR).
Practically,> should be large enough to account for effects such as plasticity of the finger and
deviations in feature position due to variations in the data and effects of the processing algorithms,
but not big enough for areas associated with distinct features to overlap. In a forensic comparison,
plasticity and distortion of the finger are accounted for by human processing, but in an automated
process, tolerances suchzamust be incorporated to accommodate these inherent variations.

4.4 Finger Plasticity

The distance between two features can change significantly due to plasticity of the finger. This
relative change of position is generally not significant for nearby features within small areas of

print. Therefore, when measuring the position of small high density features such as pores, a
local origin should be established. A minutia point can be used to establish a local origin.

4.5 Reliability

A critical factor when considering the performance of a fingerprint matching system is reliability.
Within the scope of this paper, overall reliability is broken down into two components: inherent
reliability and algorithm (processing) reliability. Inherent reliability refers to the physiological
dependability of pores, which is the probability that a known pore will be visible in a particular
live-scan print. Pores do not always appear on print images; factors such as temperature and skin
condition can conspire to alter or suppress altogether the physical appearance of a given pore.

Algorithm, or processing, reliability must also be taken into account. Depending on the quality of

the image, automated processing and detection algorithms make errors. There are two errors that
the feature detection algorithm can make: a missed detect and an incorrect (false) detect. A
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missed detect occurs when a feature (pore or minutia) is discernible in an image, yet is not picked
up by the detection algorithm. A false detect occurs when the algorithm mistakenly marks a
feature, when in fact, no feature is present. The degree of noise and degradation in the image
influences the quantity of errors. The probability of incorrect detecggnand missed detection,

Pmq are parameters on which the performance of the system depends. B ogip,,qWwill tend
to increase the FRR but have little effect on the FAR.

4.6 Match Score

A particular matching technique will produce a score representing the fraction of features

matching between the enrolled and the live-scan prints. Figure 6 provides an example of
matching based on either minutiae or pores for two segments from different fingers and also two
segments from the same finger. Generally, the number of features detected in the two different
prints, Ng and N, will be different. Therefore, the matching routine must compare two sets, or

configurations, with a different number of elements. For example, a pore matchSsaan be
defined as:

2n,—n,

where

Nt = (Ng + N¢) = total number of pores in both segments
Nm = number of pores that match
n, = number of pores that do not match

and using
N, = Ny-2n,

The pore matching scor§s can be rewritten as:

4n_—N
S, = m T Eq. 2
Ny
A match occurs when a pore is detected in the comparison image at an enrolled pore’s location. A
mismatch occurs when a detected pore from either image does not correspond to one from the
other image. Based &, a decision is made to accept or reject the claimed identity of the user.

This score will be in the range [-1,+1], where +1 represents a perfect alignment of the pores in two
different image segments. The local origin is defined to be a minutia point, and the relative
rotation of the two image segments can be measured by determining the angles of corresponding
minutia points.
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Figure 6. Pore based matching exampleandc are from the same finger ads from a different

finger. There are two very similar end point minutiae in both print segments. In fact, it is likely that
the different print segments would match based on minutia comparison alone. If the minutiae are
used to align the prints, the pore information matches for the center and right images but does not
match for the center and left images.

5. Uniqueness of Fingerprint Feature Configurations

The goal of this paper is to establish the practical performance limits of fingerprint matching
systems. Section 5 is devoted to determining uniqueness estimates which are related to the false
accept error rate (FAR). The reliability of features, which provides false reject error rate
limitations, will be presented later. In section 5.1, work done to establish the uniqueness of
configurations of minutiae will be reviewed. Similar techniques using pores instead of minutiae
will be presented in section 5.2 and 5.3. In addition, throughout section 5, practical matching
algorithm issues will be introduced and their influence on uniqueness estimates addressed.

The uniqueness of a set of minutiae or pores is defined as the probability of occurrence of the set.
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Therefore, the probability of an imposter match is directly related to the uniqueness. The more
unique a set of features, the less likely an imposter is to match the set. Obviously, increasing the
number of features used to represent the print will increase the uniqueness of the feature set, but
the frequency of occurrence of particular arrangement of features will vary also.

A key issue in evaluating the uniqueness of a set of features is whether they are independent.
Another issue is the feature distribution, for features may be regularly spaced, or the feature

density (features per nﬁ’hmay be non-uniform over the fingerprint. Addressing these issues is
essential in determining the theoretical false accept rate of the system. For example, a particular
combination of minutiae (such as the two end points of a ridge island) may occur frequently. In
this case, an imposter is more likely to match both minutia points because of their close
association, or dependence, than he would be to match two independent features. Therefore,
features that exhibit dependence are less valuable than independent features.

In section 5.1, a review of research for a minutiae configuration study that assumes independent
minutiae will be given. A method for studying minutia dependencies is summarized in Section
8.1. For pores, the dependence issue will be handled with a distinction between intra-ridge and
inter-ridge pores.

5.1 Minutia Configurations

In this section, the methods used by Osterbet@l. (Osterburg, Parthasarathy, Raghavan, and
Sclove, 1977), to determine the uniqueness of a set or configuration of minutiae will be reviewed.
The P(configuration of featuregjefines the uniqueness of a configuration of minutiae, in a given
area of print, which is equivalent to the probability of two different print segments matching.
Osterburg’s results can be used to estimate the FAR of a minutia based matching technique,
although his model does not include some very important parameters inherent to automated
matching systems, such as feature reliability, detection errors, and search area variability.
Therefore, the Osterburg model is just a starting point for determining the theoretical performance
(which includes both FAR and FRR estimates) of practical fingerprint matching systems.

By examining 1 nm x 1 mm sg@ments, or cells, of fingerprint (see Figure 7 for a perspective on
scales used in fingerprint processing), Osterburg determined the frequency of occurrence of 13
possible outcomes based on Galton fingerprint features. The results are provided in Table 1 in
Appendix A.3. The set of Galton features includes ridge endings, bifurcations, islands, dots,
bridges, spurs, enclosures, double bifurcations, deltas, and trifurcations. Osterburg included three
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other outcomes: a broken ridge, an empty cell, or some other multiple combination of features.

364 pixels @ 1100 ppi =7.76 mm

1 mm
43x43 pixels
480 pixelsj .
11.08 mm 2 _ 047
" | / ¥ . mm
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Figure 7. Scale and relative sizes used for fingerprint analysis. Inside the broad outline, the minutia
end and branch points are marked with Os and Xs respectively.

The underlying assumption made by Osterburg is that the content of each cell is a random variable
which is independent of all other cells. The implication is that any configuration of the same set
of features has the same probability of occurrence meaning, for instance, that a tightly clustered
pack of minutia is just as likely as the same set of minutiae being distributed uniformly over the
print. Although the Osterburg study gives meaningful results, empirically the independence

assumption is not valid because some configurations of Galton features are much less likely than
others.

Based on the independence assumption, the individual feature probabilities are combined to yield
the probability of a feature configuration:

P(configuration of Galton features) %p<L.. p <2 Eq. 3

wherep; (for i = 0,...,12) is the probability that a given type of Galton featurgyill occur in a
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cell, andk' is the number of cells in which the feature occurs. Ksesum to N, the number of
cells.

As an example, the 7 mm by 7 mm block of data inside the broad box shown in Figure 7 has 4
cells containing one end point only, 8 cells containing one branch point only, 2 cells containing
both a branch and an end point, and 35 empty cells (where only branch and end points have been
considered for simplicity). Therefore, the probability of this configuration of 10 bifurcations and

6 end points (16 minutiae) in 49 rAmf print is:

P(configuration) = (0.0832(0.0382%(0.0355%(0.8431§° = 6.97 x 1072

ElE
E EE E E E E

E E L E B E| |E E E E

a b c d e f
Figure 8. Osterburg minutia model and matching issues. In the Osterburg model, any configuration
of the same set of features has the same probability of occurrence. The probability of configuration

aorb, 4 end points and 12 blank grids in an area of 25%nim1.78 x 10’. In a configuration, the
relative position of the features is known as well as the type and orientation of the features. Note
that the orientation of the minutia points is not the same in configurati@msic and although the
configurations have the same probability of occurrence, they do not match. A common matching
technique is to discard the type information; therefore, configuratioatched but the two have
different probabilities of occurrence. Depending on the defined origin or reference point of the
print, configurationsa and e may match. Finally, the resolution at which feature locations are
measured (or the degree of allowed deviation in detected feature position) means that
configurationsa and f have a different probability of occurrence even though the minutiae are
exactly the same (configuration uniqueness is a function of resolution).

Figure 8 demonstrates the need to expand the Osterburg model in order to determine practical
values for the probability of matching. In Figure@andb are two print segments that have the
same set of features, but different configurations. These two prints would not match but would
have the same probability of occurrence under the auspices of Osterburg model:

P(1st configuration) = P(2nd configuration) =
P(end poinﬁf cells with an end pinI(empty celﬁ empty cells_
(0.0832%(0.766¥1=1.78 x 10'. Eq. 4

For this example there are:
Combination(25 4) = 12650

different configurations possible for a set of 4 end points in 25 cells, each having the same
probability of occurrence.
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A comparison of a and c (in Figure 8) shows that although the feature types and locations match,
the orientation of each feature is also crucial to the uniqueness of a configuration. The orientation
is determined by the ridge flow direction, and the number of different orientatignss arbitrary

(8 for instance). Whereas the probability of both configurations is the same under the Osterburg
model, the different orientations actually distinguish the two configurations, thus:

P(configuration with orientation) =
P(configuration without regard to orientation) (IN'F Eq. 5

whereNp is the number of points in the configuration for which the orientation is determined.

In figure 8,d demonstrates a situation where the location of all the features raatgét the
feature types do not match. These two configurations have different probabilities and do not
match under the Osterburg model but will match for a routine which keys on geometry but is
invariant with respect to type. The effect of translation is noted ande. Even though these
configurations are different by definition, they may match depending on the choice of the
reference point used to measure the minutia locations. Finally, the effect of the measurement
accuracy (or resolution) can be seen compaangith f. Even though the relative minutia
positions and orientations are exactly the same, the cell size (feature area) is different resulting in
a different probability of occurrence for the two configurations.

5.2 Pore Configurations

5.2.1 Pore Distribution

In order to describe the spatial regularity of pores, a deterministic model for pore distribution was
proposed in section 4.1 in which neighboring pores are separated by a constant distad@ee
arranged in a lattice formation (see Figure 5). Tdhisepresents the average distance between
neighboring pores, where it is assumed that the pores are located in the center of a region
containing only one sweat gland. The valué &f thus calculated from a live-scan image as:

d = (area of ridges/number of poréé% Eq. 6
For this extreme case, matching two images consists of simply lining up any pore on both images,
since the rest of the pores would align themselves accordingly. The remaining pores in the image
contribute no additional information; that is,

P(all pores match)=P(one pore matches)
The model is made stochastic by assuming that each pore position can deviate by a small random
amount. The methods used in the next several sections to model intra-ridge pores are closely tied
to the lattice model. The intra-ridge models represent a single ridge, whereas the lattice model
can be thought of as being composed of multiple independent ridges covering an area.

5.3 Intra-Ridge Pore Configurations
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5.3.1 Ashbaugh Model

In this section, a model describing fingerprint pores presented by Roger Ashbaugh of the RCMP
will be examined. Ashbaugh presented his work and reviews of prior work by Edmond Locard
(circa 1912) in a series of articles on ridgeology, edgeology, and poroscopy (Ashbaugh, 1982).

According to Ashbaugh, the fingerprints begin forming on the fetus around the thirteenth week of
development. Bumps form on the surface of the skin fusing together as they grow creating the
ridges. The bumps, or pore pods, each contain one pore which originates from a sweat gland in
the dermis. The pods are approximately equal in width and length (0.48 mm) resulting in a
frequency of about 20.8 pores/cm of ridge. The pores are unique in shape, vary in size (from 88 to
220um), and change only in size due to growth of the skin.

Ashbaugh Model 1,2
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Figure 9. Models used to represent pore occurrence along a single ridge. These models can be used
to predict the probability of occurrence of a sequence of N pores on the ridge, dhsrthe
average distance between intra-ridge pores andhe average ridge width.

Locard proposed independent poroscopy based identification and used this technique successfully
to convict criminals in the early 1900s. In contrast, Ashbaugh claimed that pore and ridge
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comparisons should be used in conjunction with appropriate weighting depending on the available
data. Generally, the quality of the inked or latent print determines the usefulness of pore
comparisons in law enforcement applications. According to Ashbaugh, the reliability of pores
and their shape varies in inked and latent prints. It should be noted that the consistency of pore
features acquired from live-scan devices will differ from that resulting from inked or latent
developing techniques (see Table 5 in Appendix A.7). As a result of his concern over pore feature
inconsistency, Ashbaugh promotes the comparison of pore locations only and states that shape
and size should not be used in general.

Ashbaugh further contends that pore pods occur regularly, but the position of the pore within the
pod is a random variable. In addition, he assumes independence between pore pods. In his
model, each pod is divided into 5 general areas in which a pore may occur (as seen in Figure 9).
The probability of a pore occurring in any of the 5 regions, A, B, C, D, or E of the pore pod, is:

P(pore in A) = P(pore in B) = P(pore in C) = P(pore in D) = P(pore in E) 5 0.2
Under the assumption that the pods are independent,
P(a sequence of N intra-ridge pores) 5P = (0.2)N Eq. 7

given a sequence ™ pores on the same ridge and assuming that each pore can occur in one of

five equally likely states with probabiliti?p.
b

Figure 10. Sufficient information for identificatiora was scanned at a resolution of 800 dpi. The

small segment outlined with a dark box, and expandeul iepresents about 5 nfrof fingerprint

area and contains more than 20 pores. According to Locard or Ashbaugh, the segment is sufficient
to identify its owner based on the relative position of the pores alone (without even including shape
or size descriptions). Note that sufficient information would exist for a minutia match by doubling
the size of the rectangular region (about 12 minutia could be enclosed). Although any segment for
which there are at least 20 pores may be used for identification, it is unlikely that sufficient minutia
information would be present in such a small area.

Ashbaugh provides numerical examples for the uniqueness of a sequence of intra-ridge pores.
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Based on his assumptions, the probability that two consecutive intra-ridge pores have the same
relative position as two other pores is 0.04, and the probability of occurrence of a particular

arrangement of 20 consecutive pores is:
Pashbaugh® Sequence of 20 intra-ridge pores) =2 1.05 x 10* Eq. 8

In addition, Ashbaugh supports the claim made by Locard that matching between 20 and 40 pores
is sufficient to identify an individual. The implication of this statement is demonstrated in Figure
10 in which a small area of print is sufficient for identification. Since there are about 20 pores per
cm of ridge, and a typical live-scan fingerprint usually contains over 50 cm of ridge, the amount of
pore information required for identification is just a small fraction of the available data.

5.3.2 Distribution of Distances Between Sequential Intra-ridge Pores

In this section, a procedure for estimating the uniqueness of a sequence of pores based on
measurements of real fingerprint data is summarized. To accomplish this task, pore locations
along the ridges of live-scan prints were detected manually. Then, the distance between
successive intra-ridge pores was calculated for individual prints. The plots of intra-ridge distance
for individual fingerprints generally produced bimodal distributions with a dominant peak and an
inferior peak resulting from missing or skipped pores. However, when all the data were
combined, 3748 distance measurements resulted in a smoothed single mode distnution (

0.377 mm (16.955 pixelsigr = 0.1820 mm (8.1680 pixels)) with a significant upper tail, as seen

in Figure 11.
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Figure 11 Plot of consecutive intra-ridge pore separation. The most frequent occurring separation
is 13 pixels (0.3 mm).

The tail of the distribution begins at about 0.69 mm (30 pixels), and tapers off at 2.40 mm (104
pixels), the maximum observed distance between intra-ridge pores. The frequency value peaked
at 0.30 mm (13 pixels), with a probability of occurrence of 0.0645 (at a measurement resolution of
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1 pixel at 1100 ppi). This distance is defineddgsand its probability of occurrence ¥dg). In
Figure 11, there are 104 bins represented, which is the maximum observed spacing between
pores, meaning that each bin is the size of a pixel.

Given this distribution, the probability of occurrence of any sequence of intra-ridge pores can be
calculated by assuming the pores are independent. For this case, the only parameter of interest is
the distance between consecutive pores. In addition, a lower bound for the uniqueness can be
calculated by assuming that all the pores in a sequence are spaceg (tye most likely
separation). Then any sequence of the same number of pores is guaranteed to be at least as unique
as this bound.

Table 2 in Appendix A.4 summarizes the uniqueness of sequences of intra-ridge pores with
varying resolution. In this table, the results depend on the number of pores in the sequence and
also on the measurement accuracy, or resolution, of a pore’s position. As the measurement
accuracy is decreased (fewer bins in the histogram), there are fewer distances possible between
pores but the area under the distance probability density function remains constant, resulting in
distances with higher probabilities. Therefodg, may not change buR(dg) will increase. The

new values foiP(dg) were determined by accumulating area of the normalized histogram around
dr symmetrically. From this table, with a resolution setting of r=3, the upper bound on the
probability of occurrence is:

Pueasure§@ Sequence of 20 intra-ridge pores) = 0.20% 1.16 x 104 Eq. 9

for a sequence of 20 pores, which is in close agreement to Ashbaugh'’s results in Eq. 8.

Probabilistic Value of Intra-Ridge Pore Configurations at Various Resolutions
35

30

N
)]

N
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Figure 12. Plot of probability of a sequence of intra-ridge pores as a function of varying
resolution. The y-axis shows the negative log probability. The highest resolution and greatest
number of pores yields the lowest probability of occurrence.
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A setting of 3 for the resolution parameter, r, is reasonable based on the fact that a typical pore has
a diameter (assuming a circular shape) of about 5 pixels (IIf)pand the adjusted average
spacing (compensating for skipped pores) between intra-ridge pores is 13 pixels |(800.3
Thus, setting r to 3 is equivalent to an allowed displacement of size 3 pixelsy69.3 which to

detect the pore. Therefore, the pore’s position can vary slightly from its expected value, but too
much variation will cause a mismatch. In addition, the “search area” is only big enough so that
one pore is likely to be present and an adjacent pore is unlikely to overlap in this area. Figure 12
demonstrates how resolution and the number of pores affect the probability of occurrence.

5.3.3 Intra-ridge Pore Distribution from models

In Ashbaugh’s treatment, pore pods are divided into five regions in which the occurrence of the
pore is equally likely. In reality, the desired measurement accuracy determines the number of
regions. In addition, dividing a pore pod into 5 distinct regions is not convenient for an automated
system. Therefore, a similar but improved model for the pore placement will be discussed next
which will be used to establish the distribution of intra-ridge pore spacing. The results that the
model generates can be compared to the measured data to determine the accuracy of the model.

Assume that an individual pore occupies a unit area, or cell. Unit cells are bounded on the edge
by the ridge border, and their length is defined as the average distance between intra-ridge pores.
Unlike Ashbaugh’s model, unit cells are not a physiological feature; they are simply defined as the
average area of print associated with a single pore. The location of the pore within a unit cell is a
random variable and therefore, a sequence of intra-ridge pores is represented by a random vector
for which the elements are independent and identically distributed. In addition, there is a finite
probability of a pore not occurring in a unit cell (an empty unit cell). This condition is used to
explain the occurrence of relatively long segments of ridge which have no pores.

As shown in Figure ®, the unit cells are divided into 9 sub-regions,.A;, for a given unit cell

i. For this analysis, two models will be examined. In the first model, Model 1, the position of the
pore is uniformly randomly distributed over the entire unit cell. This assumption eliminates the
need for the 9 sub-regions. In the second model, Model 2, the probability that a pore occurs in the
center of the unit cell, or ridge, is greater than that for the edge of the ridge. For this case, the pore
can be located anywhere within the sub-division of the unit cell with equal probability. Note that
the intra-ridge pore models essentially represent one column (or row) of the stochastic modified
lattice pore model described in Section 4.1.

The distribution of distances between consecutive intra-ridge pores in a sequence can be
simulated using these two models and the results compared to the distribution obtained using the
actual measured data in section 5.3.2.

5.3.3.1 Ashbaugh model

Ashbaugh'’s critical assumptions about the “pore pod” are that it is symmetric in shape (width =
height), a series of pore pods form a ridge, and the pore can be located anywhere within the pod
with equal probability. By generating uniformly distributed random vectors of length
approximately equal to the number of pores measured in section 5.3.1, a string of pores was
modeled and the distance between consecutive pores calculated. The resulting distribution is
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roughly triangular in shape and a simulation is shown in Figure 13.
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Figure 13. Distribution of intra-ridge pore spacing according to Ashbaugh’s assumptions.

Comparing Figure 14.a, the distribution of the measured data, it is evident that these two
distributions do not match; therefore, modifications to the Ashbaugh assumptions are required to
model the distribution more accurately.

5.3.3.2 Model 1

Model 1 is an extension of the Ashbaugh model. The assumption of randomly located pores
within a unit cell is similar to the assumption of randomly located pores within pods. The
difference is that Model 1 incorporates unit cells with rectangular dimensions instead of squares
with the width corresponding to the average width of a ridge and the length being the average
adjusted spacing between intra-ridge pores (derived from measured data). In addition, the
provision of a unit cell with no pore present (skipped pores) in Model 1 is used to account for the
long tail of the distribution of the real data. The probability of a skipped pore is estimated using
the distribution of distances derived from measured data and is approximated as 8.3%. Finally,
Model 1 limits the minimum possible spacing between pores so that simulated pore positions are
not unreasonably close together. The distribution of a set of simulated pore positions based on
Model 1 is shown in Figure 14.c and is very similar to the distribution measured from real data.

5.3.3.3 Model 2

Model 2 is an extension of Model 1 and is meant to account for the fact that in real fingerprints the
pores tend to be located on the center of the ridge. The assumptions used in Model 2 are the same
as those used in Model 1 except that the probability of the pore being located in the center of the
ridge is higher than the probability of a pore occurring on the edge of the ridge. It is seen from
Figure 14.d that Model 2 simulates the real data distribution closely but there is not a significant
difference between simulations of Models 1 and 2.

5.4 Ridge-independent pore configurations

Knowing the probability of occurrence of a sequence of intra-ridge pores is of value for proving
the efficacy of using pores for identification. However, in practice, it may be unnecessary or too
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Figure 14. Distribution of intra-ridge pores. The measured distribution of spacing between
consecutive intra-ridge pores is shownairfu = 16.96,0 = 8.16) (where distance is measured in
units of pixels). Ashbaugh’s model for pore distribution generates the dashed clxvdadel 1 is
an extension of the Ashbaugh model which includes non-square unit cells and also a minimum
allowed separation of pores and is represented by the dotted graphMuodel 1 also has a
provision for missing pores, which can be used to account for the tail of the real data distribution as
shown in the solid curve ib. For Model 1, the unit cell size was 21 pixels wide by 13 pixels long,
the fraction of skipped pores was 0.083, and the minimum allowed pore separation was 1 pixel (m
=16.7 and s = 6.5 for model 1 with 50000 samplesghows the close fit between the real data and
the Model 1 simulation. The second model, Model 2, includes the ability to force pores to be
located on the center of the ridge with a higher probability than on the edges. With the probability
of a pore occurring in the middle 1/3 of the ridge increased, the distribution is plotigdliong

with the real data distribution for comparison.

difficult (for example with very noisy images) to associate pores with specific ridges. In these
cases, extracting only the pore information while disregarding their ridge association is
preferable. In this section, the value of ridge-independent configurations of pores will be
examined. For this analysis, the configurations are made up of pores which exist in a local region

of the fingerprint but may reside on several different ridges.

5.4.1 Binomial distribution of pores

February 10, 1999 23



Roddy and Stosz: Fingerprint Features - Statistical Analysis and System Performance Estimates

The technique used by Osterburg, outlined in section 5.1, for determining the uniqueness of a
configuration of minutiae can be extended for use with pores. For this purpose, 67 different prints
of varying quality were analyzed on a 5x5 pixel scale (see Figure 7 to get a feel for this size
segment). Each image was divided into 5x5 pixel segments and the number of pores per segment
was counted. In such a small area, there is little chance of more than one pore occurring;
therefore, a binomial distribution should result. From the data, 93.3% of search areas contained
no pores and 6.7% contained one pore.

Defining

Py = P(one pore in a 5x5 pixel cell) = 0.067 Eq.10
and

g=1-p, = P(no pores in the cell) = 0.933

and assuming that pores are independent, the probability of occurrence of a configur&tion of
pores in a region dfi; cells is given by:

P(Np) = pg gt e Eq. 11
where there are

MNcO N

0 0= c Eq. 12

MNpO  Np!(Ng—Np)!

different configurations possible whBlg pores are present.

Assuming independence among the pores, the binomial distribution can be used to yield the
probability of any particular configuration of pores occurring in any area of print. For example, a
section of fingerprint which measures 20x20 pixels (0.462 mm x 0.462 mm) consists of an array
of 16 grids of size 5x5 pixels each. Therefore, the probability of occurrence of a configuration
with between 0 and 16 pores in that area can be calculated. Table 3 in Appendix A.5 summarizes
the results for this analysis. From the table, the most likely configuration of pores in a 20x20
pixel region has a single pore. The probability of occurrence of a certain configuration with one
pore is 0.0237 and since there are 16 configurations of one pore possible, the likelihood that one
pore is present (regardless of the configuration) is 0.379.

In practice, a larger segment of fingerprint is desirable. The results for a 40x40 pixel (0.924 mm x
0.924 mm) area, 4 times the area of the 20x20 pixel segment, are discussed next. For this case,
the segment consists of 64 grids of size 5x5 pixels (see Figure 15 for a typical example). A
segment this size is large enough to contain significant ridge structure while not exhibiting
distortion due to finger plasticity sometimes present in larger areas of print. As seen in Table 4,
the most likely number of pores in this area is 4, with a probability of 20.0%. (Figure A.5.1 shows
the relationship between the number of possible configurations for a given number of pores, the
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probability of any particular configuration of a given number of pores, and the overall probability
of a given number of pores occurring.) As an example, any configuration of 4 pores, like the one

shown in Figure 15 has a probability of occurrence of 3.14 ¥,1dnd there will be 6.35 x 0
different configurations of 4 pores in a 64 grid area. For comparison, from the table, it is noted
that the most likely configuration is the one with no pores, which occurs with a probability of
1.18%. For perspective, assuming the most likely sequence of pores occurs in a 40x40 pixel
segment, the probability of a different fingerprint matching is 0.0118 based on comparison of pore
location only with a resolution (or measurement accuracy) of 5x5 pixels.

5 pixels

Figure 15. A possible pore configuration. Using a 5x5 pixel grid (equivalent to 0.115 mm x 0.115
mm area of print) a binomial pdf can be generated from the probability of a pore being present or
absent in the 5x5 cell. With an analysis area of size 40 pixels x 40 pixels which is 0.92 mm x 0.92
mm, there are 8x8 grids of size 5x5 pixels. The probability of this configuration (or any

configuration of 4 pores) is 3.14 x 10

In order to compare the results for intra-ridge sequences to ridge independent configurations,
assume that 20 pores occur in an area of size £.nifhis is a good approximation based on the

density of pores being about 5 pores/?mrﬂ\gain using cells of size 5x5 pixels, the area consists
of 300 cells. Given this area, the probability of occurrence of a configuration of 20 ridge
independent pores would be,

Pr|(a configuration of 20 ridge independent pores) = 1.23%40 Eq. 13

which is 1.06 x 108 times smaller than the probability of an intra-ridge sequence with the same
number of pores (assuming all pores are spaced by the most likely separation).

5.4.2 Measuring configuration probabilities

In the previous discussions, the underlying assumption of independence makes uniqueness
calculations possible. In reality, though, the independence assumption is not accurate. There
appears to be a definite influence on a pore’s position depending on the relative positions of the
neighboring pores. If the independence assumption is not valid, then the assumption that all

possible configurations of N pores are equally likely is also not valid. In this case, it is desirable
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to determine the exact probability of occurrence of each possible configuration of N pores by
finding the histogram or pdf of the configurations. This information could be used by the

processing routine to ignore highly likely configurations and to search for very distinctive pore

configurations providing inter-class separability. The expected outcome is a reduction in the
number of false accept errors.

As alluded to before, a segment with an area of between 1 and 4 shauld be optimal for
processing pores. For this size area, the number of pixels (at 1100 ppi = 43.3 ppmm scanning
resolution) is approximately 40x40 (1600) to 80x80 (6400). The resolution is effectively reduced
by analyzing 5x5 pixel segments, leading to areas of 8x8 (64) or 16x16 (256) cells. In fact, to
determine the histogram of all possible configurations is unreasonable even for the simplest case

of low resolution and smaller area. There af&@bssible configurations for the smaller area with
low resolution and %Ooconfigurations at high resolution and larger area. As an interesting note,

about 4,000 km by 4,000 km of print area would be needed in order to fill each of°the 2
histogram bins with only one entry. Even with the enticement of free doughnuts, it is unlikely that
the researchers could have gathered sufficient subjects to accumulate the data for this experiment.

These numbers are actually exaggerated, since only a small subset of the total number of
theoretical configurations are really possible. Based on measurements, there were never more
than 12 pores detected in a print area of size 40x40 pixels, and this event had the remote
probability of 0.03%. The most probable number of pores to occur in this area was 4, with a
probability of 22.3%. The complete distribution of measured data is shown in Figure 16. Even by
applying such a realistic constraint on the pore density, the number of configurations is still
enormous.

Probability of condensed codes in a 40x40 pixel area
0.25 T T

0.21

0.151

Probability

0.1r

0.05F

0

. . . . . .
0 10 20 30 40 50 60 70
Condensed codes

Figure 16. Measured density of pores (pores/?mrin a 40x40 pixel area of print.
5.4.3 Measuring configuration code probabilities
Even though the actual probability of a particular configuration cannot be determined, valuable

information can still be gained by analyzing ridge independent configurations of pores within
realistic sized regions. The next two sections will outline an analysis whereby a binary code
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method was used to represent pore configurations. Implementing a binary code (1 = pore, 0 = no
pore) in a 4 cell area of analysis to describe a configuration yields 16 different possibilities within
those 4 cells (0000, 0001, ..., 1111). As already mentioned, executing a high area (many cells) or
high resolution analysis is not practical. Therefore, using a pyramid paradigm, a low resolution
and small area analysis was performed first and “tiers” of analysis areas were built around this
basic unit. Once the accuracy of the information gathered from the small area, low resolution
study was established, a higher resolution study was conducted. Sixty-seven different images of
varying print quality were used for this analysis.

5.4.3.1 Low resolution configuration code study
The exact size of the basic unit of analysis was determined using the average pore density in a
print, where

size of analysis unit = (total number in pixels/total number of pH?es)
-> 19 x 19 pixels.

Level 2, 76 pixels

1 or more 1 or more Level 1, 38 pixels

pores pores Level 0, 19 pixels
1 pore| 1 pore \

1 pore| 2 pores

1 or more 1 or more
pores pores Code 1111, prob =0.28

Code 1111, prob = 0.95

Figure 17.Ridge independent pore model. For example, in a 76x76 pixel area (level 2), the code is
1111, at higher resolution (level 1), each 38x38 pixel block has at least one pore present, giving a
code of 1111. Finally, at the Level O analysis, the exact distribution of the number of pores present
is known within a 19x19 pixel area. For this example, assume that each level 1 segment contains 5
pores (1 in each of three blocks and 2 in the remaining block), then the probability of this particular

occurrence of 20 pores is 5.186 X80

This square analysis area is the “Level 0” unit of a three-tiered construct (see Figure 17); within
this level, the distribution of the number of pores present was determined. The most frequent
occurrence was 1 pore in a Level 0 analysis area which happened in 48% of the units. The
frequency of pores per analysis unit is shown in Figure 18.

Two higher levels are used to formulate the binary code discussed earlier. The next tier is
composed of 4 units of the Level O area of analysis (38x38 pixels). Within each Level 0 unit, a
one represents the existence of at least one pore, and a zero indicates that no pores are present in
that area. The binary digits from these 4 blocks generate a 4-digit code that can be analyzed to
determine which codes occur the most or least frequently. This model precludes establishing the
exact pixel location of each pore.

The probability of one pore existing in a Level 0 unit is significantly different from the probability
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Figure 18.Measured density of pores in a 19x19 pixel unit cell.

of five pores residing in a unit, and thus these probabilities, in combination with the probabilities
of the 4-digit codes, or Level 1 configurations, contribute to the overall probability of an actual
pore configuration at Level 1. For Level 1, the most frequently occurring code was 1111, which
occurred 28% of the time. The code frequencies are shown in Figure 19, where the next most
frequently occurring codes were those containing three ones and a zero; each of these occurred
about 10% of the time. The least frequent (and therefore the most valuable) code was 0000,
which occurred with a frequency of 1.5% (this number actually matches closely the result
established in section 5.4.1 in which the calculated probability of no pores is 1.18%).

Probability of codes at low res: Level 1
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Figure 19. Measured frequencies of “codes” occurring in a 38x38 pixel area, where a binary “1”
indicates the presence of at least one pore in a 19x19 pixel area, and a “0” indicates an absence of
any pores. The codes are comprised of these 1s and Os to represent configurations of pores.

The probability of a specific configuration occurring, for example, 1111 at Level 1 with
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corresponding densities in the Level O units of 1, 2, 3, and 1 pores, is thus:
P(configuration) = P(code 1111 at Level 1)x
P(density=1)P(density=2)P(density=3)P(density=1)
= (0.28)x(0.48)(0.19)(0.03)(0.48) = 3.68 x40

which is the probability of a configuration of 7 pores in an area of 38x38 pixels.

Probability of codes at low res: Level 2
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Figure 20. Measured frequencies of “codes” occurring in a 76x76 pixel area, where a binary “1”
indicates the presence of at least one pore in a 38x38 pixel area, and a “0” indicates an absence of
any pores. The codes are comprised of these 1s and 0s to represent configurations of pores.

Four Level 1 units can be combined to make up the third tier (Level 2), which is simply an
extension of the Level 1 analysis. Each Level 1 unit contains a zero if none of its Level 0 units
have any pores in it, and the Level 1 unit contains a one if any of its Level 0 units contain at least
one pore. The 4 digits from these Level 1 units, four of which make up Level 2, generate another
4 digit binary code, the different possibilities of which are analyzed similarly to the codes
generated by the Level 0 units. The Level 2 analysis generated codes of 1111 with a frequency of
about 95%, which is evident in Figure 20. Because the Level 2 analysis is at such a low resolution
(low measurement accuracy), many of the codes, especially those containing mostly zeros, never
occurred. Using an example with 20 pores (see Figure 17 for details), the probability of a
particular configuration is determined to be,

PLeveida configuration of 20 ridge independent pores) = 5.186% 10 Eq. 14

The codes generated at Levels 1 and 2 and the various local pore densities of Level O generate
three different sets of probabilities, all of them combining to give the overall probability of pore
configurations in an image. This analysis, however, is performed at a very low effective
resolution, and though it provides actual configuration information, a higher resolution analysis
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will yield more valuable results.

5.4.3.2 High resolution configuration code study - Binomial Distribution

The previous analysis was repeated at a higher resolution. For this case, instead of using
individual codes, such as 1101, the number of ones in the code were summed (lLe=,3Ld0es).

This limited analysis was necessary because the number of possible codes for a reasonable area of
print is exceedingly large. The exact configuration information is lost when the codes are
condensed in this way and the codes simply represent the number of pores in a given area. The
result is a histogram of the number of pores in a given area of print which can be compared to the
results achieved assuming independent cells with a binomial distribution as was done in section
54.1.

Instead of the 19x19 pixel area (Level 0 analysis) which was analyzed in section 5.4.3.1, a 5x5
pixel cell was used. As was stated before, a binomial distribution results with 93.3% of the search
areas empty and 6.7% containing one pore. The actual probabilities of the condensed codes were
found by analyzing an area 4 cells by 4 cells (20x20 pixels) and then an area 8 cells by 8 cells
(40x40 pixels). These analyses yields the distribution of either 16 (small area) or 64 (large area)
possible “condensed codes.” Similar to Level 1 of the low resolution study, ones and zeros were
assigned to blocks according to whether or not pores were present.

Theoretically, a similar distribution could be derived by extrapolating the binomial distribution
(the probability of one or zero pores). This was done in Section 5.4.1 using Osterburg’s method.
However, this method assumes independence. Section 8 of this paper explores the concept of
dependence among pores and demonstrates why extrapolating a distribution from the binomial is
not as accurate as measuring the pore density directly.

6. Reliability - FRR analysis

Many factors that determine the FAR of a system were discussed in the previous sections; Section
6 is devoted to factors that can affect the FRR. Whereas the FAR analysis centers on the
differences between an impostor and an authorized user, the FRR focuses on variability that
occurs within an authorized user’s fingerprints over time. These variations can be studied to
determine the feature reliability, with regard to physiology and algorithm.

To ensure authentication of an individual with 100% accuracy, either the individual’s live-scan
fingerprint must be exactly the same as the enrolled print or, in the presence of noise and
distortions, the features of the live-scan print corresponding to the enrolled print must be extracted
without error. In the real world, noise and distortions are always present, and no automated
process is perfect. In addition, the physiological reliability of pores falls short of 100%; therefore,
the inherent and algorithm (or processing) reliability warrant further study.

6.1 Inherent reliability
The physiological reliability of pores (or inherent reliabilitg) depends on environmental

factors; temperature and skin condition can conspire to alter or suppress altogether the physical
appearance of a given pore. Individual pores from 516 images of ten different fingerprints were
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analyzed to determin® with respect to both pore visibility (or detection) and size (both absolute

and relative to other pores in the image). Clarity of the pore, image quality, skin condition, and
pore density were also recorded. The results can be seen in Table 6 of Appendix A.7. It should be
noted that all of this data was collected manually (by eye) to prevent introducing algorithm errors.

The specific pores studied were visible on average in 91% of the im&yes0(91). The least

reliable pore was visible in only 75% of the fingerprint images. In this case, the reason for the low
reliability is that during capture of these images, the individual altered his prints through a variety
of means, i.e., gripping a cold soda can prior to image capture. Therefore, 75% can be estimated
as a lower bound foR;. Although pore size and shape are of significance, the most important

aspect ofR is whether or not the pore is actually present (detectable). It is also important to

remember that, although the lower bound for detection is 75%, that lower bound is for one pore,
not a configuration of pores. If twenty pores are used to match prints, the 75% refers to the
reliability of only one pore out of the twenty.

Although the characteristic skin condition, image quality, size, and shape consistency varied
somewhat among the individuals’ prints, there were several correlations between categories. For
instance, the more neutral prints (with regard to skin condition) had the highest image quality.
Furthermore, prints of lower image quality tended to correspond to a dry skin condition, and their
pores were less consistent in shape. Finally, circular pores proved to be the most reliable with
regard to shape.

6.2 Algorithm reliability

The reliability of the algorithmRy, was also examined. Using high quality prints, the prevalence

of missed detects and false detects was recorded and the causes for both types of errors were
assessed. The detection algorithm missed 11% of the pores pregen0(11), and had a false

detect occurrence of 1%. It was found that the predominant source of missed detections was the
thresholding stage used in preprocessing to convert grey scale images to binary. These processing
errors occurred in 4.8% of the detections. On the other side of the coin, most of the false detects
were caused when the algorithm detected a pore in the middle of the valley. This physically
impossible situation may have resulted when the curvature of the ridge implied that a pore was
present on the edge of the ridge. The algorithm might interpret such a structure as a pore. A
description of the events causing missed detects and false detects can be found in Table 7 in
Appendix A.7.

These reliability statistics apply to a single pore in a configuration. The probability of the
algorithm missing a given pore is 11%, but the probability of missing a configuration of many
pores is orders of magnitude smaller.

In further discussiongy; will be defined as the probability of a feature appearing in a fingerprint
image, andry the probability that the feature is properly detected by the algorithm. Thefefore,
(total reliability), is defined as the probability that a feature appears and is properly detected.
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7. Performance

Section 5 examined the unigueness of configurations of features and section 6 addressed feature
reliability. In this section, uniqueness and reliability are conjoined to establish performance,
which is defined in terms of the number of false reject and false accept errors the system produces.
The number of false accept errors is related to the uniqueness of a configuration while the number
of false reject errors depends on the reliability of the features. Some parameters which contribute
to uniqueness have been discussed earlier: number of features, density of features, and feature
area. Parameters critical to the reliability are the inherent feature reliability and the efficiency of
the feature detection algorithm.

a b d e
f
Cc
g
Segment 1 Segment 2
(live-scan)

Figure 21. Matching the enrolled segment (segment 1) to the live-scan segment (segment 2).
Features a and b in segment 1 match features d and e in segment 2. If both segments originate from
the same finger, then features d and e are either reliable features which were correctly detected or
they are false detections and a and b were unreliable. Features f and g are false detects, and feature
cis an unreliable feature. If the segments originated from different fingers, then features d, e, f, and

g are randomly positioned and can be either real features or false detects.

Consider comparing two fingerprint segments of equal size. Segment 1 is the enrolled segment
and segment 2 is a subsequent live-scan which originated from either the same user or a different
user. The comparison is based on feature location only and segment 1 copt@agires while

segment 2 contains, features. Assume that there were no errors in detecting features during

enrollment (all real and no false features were detected). For the two possible sources of segment
2, it is necessary to determine the probability density function for the feature matching score.

Note that prior to this section all references to probability of matching or uniqueness of a set of
features related to the entire set of features. Every feature was required to match for the entire set
to match. In this section, a more realistic approach is taken in which the number of features in
both segments as well as the number that actually match are taken into account. A matching score
provides the degree of matching between two segments with a range of a complete non-match to a
complete match.

Some relevant parameters needed for the matching problem are:

Nn. - the number of cells or feature areas within the segment of print being analyzed
n, - the true number of features in segment 1 - the enrolled segment
n, - the number of features detected in segment 2 - the live-scan segment
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Nm, - the number of matching features
Neg - the number of features falsely detected

Pmd - Probability that a valid feature is not detected

Ped = 1 -Pmg = Ry - probability that a valid feature is correctly detected

Prg - Probability of detecting an invalid, or false, feature at any location
Pem= 1 -Psq - pProbability that a feature is not detected in an invalid location.

If segment 2 originates from the same user as segment 1, then reliability must be addressed:

R - reliability
R - inherent reliability of the feature
R4 - algorithm detection reliability

R=R xRy
In addition, two sources contribute to the number of matching features:

Nm=NMmR* NmF
Nm r- the number of correct (valid feature) matches
Nm g - the number of false detects (invalid features) that match real features

Figure 21 describes some of the relevant parameters required for performance analysis.

Reliability is defined as the probability of detecting a valid feature in the correct posiaan
range from O (totally unreliable features) to 1.0 (no missed detects). When segment 2 is from an
impostor printRis considered to be 0 anmgis set equal to the measured value for the probability

of a pore in a grid cell. This situation simulates a randomly located set of independent features in
segment 2.

A feature match is defined as the detection of a feature in the live-scan segment at a valid (or
enrolled) feature location. A feature mismatch is defined as any feature in the live-scan which
does not match an enrolled feature. It is possible to make a false detection at the location of a
valid feature which is unreliable. This situation results in an incorrect (false) match but is not a

mismatch.

Define the feature matching score to be:

5. = om_[27 T Eq. 15
n1 n2,max .

wheren; ,5,is the maximum number of features allowed in segment 2.

The range ofX: is [-1,+1] where a score of -1 corresponds to the case whgre 0 andn, =
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N2 max This is the worst possible match; no features match and segment 2 contains the maximum
number of detected features allowed. A score of +1 results wihenn, = n,, a perfect match
with no mismatching features.

Givenng, Ny, Ny, Ny g Ny B R, andpgg, the probability o, pores matching can be determined by

calculating the probability of the score resulting from each variation of the input parameters and
then accumulating the probability of like scores. The result is the pdf of the matching Sgore,

which can be used to calculate false accept and false reject error rates.

First assume that the two fingerprint segments originate from different fingers. Furthermore, for
simplicity, assume that the features are independent. Given an enrolled feature set, the number of
features in segment 2 and their positions are random. Therefore, the number of matching features
is a random variable. Whether features detected in segment 2 are real or result from detection
errors is transparent since the only concern is how many features match. ngimgnandn, the

probability of matchingn,,, features between segment 1 and segment 2 is:

1_nm_1 11

B n-E ] neenif
n,—i Ne—N,—i
Pear(Nm) = g‘%ﬂi:o 1 izo C ’ %ncgp "(1-p)* ™| Eq.16
FAR\"'m M, ﬂ‘l—l 0 M, a a .
Of | n.—10
L q:o D .

where the product terms are valid for 0. Or, by defining:
pFAR(nm) = pnmpn2 Eq 16.a

The first term in Eq. 16 or Eq. 16.a,,, the probability thah,, features from segment 1 match

in segment 2. The second termpgs,, the probability that there ane, features in segment 2,
wherep,, which was determined in section 5.4.1, is the probability that there is a feature in a cell.
In this situation, the second term incorporapgginto p, and reliability is not an issue since the
print segments originate from different fingers.

As an example, assume that for a given= 300,n; = 20, andn, = 25, that there are,, = 10
matching features. The probability n§ having 25 features is 0.0457 and the probability that 10

of them match those in segment 1 is 2.5175 Sglﬁ/ing an overall probability of 1.1505 x 1%
of this situation occurring. The corresponding match sc&tefrom Eq. 15 is 0.45 assuming that

N2 maxiS equal tan..

Next, assume that the two print segments originate from the same finger. Furthermore, the
rotation and positioning of the segments are assumed to be known exactly. In this case, the
feature reliability and the number of false detects are of critical importance. A feature may or
may not be correctly detected in the live-scan segment depending on its reliability, leading to a
reduction in the number of features matched. In addition, there are random false detection errors
in the live-scan image segment which, depending on their position, will match (improve the score)
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or mismatch (reduce the matching score). The probability of matopjfegtures is:

P(Nw) = Pn, P, -Pn, Eq. 17

whereny,=ny, g+ Ny g

on 0O _
p. =0 T R™(1-R)" ™" Eq. 18
m, R D']m,
is the probability ofh,, gmatches corresponding to real features which were correctly detected.
r |j1m,F_l Dj11_nm,R_nm,F_l 0]
0 N, =Ny, =i Ne— N, —il]
U‘l_nm,F\":DiUo (L] il:lo i
Pn,. = L B —— Eq. 19
m, F D nm,F |:| |j11_|:,|R_ |:|
H Ne—Nm r—10
L |:| i=0 |:| .

wherepyny, gis the probability ofn,, r matches which are matches of falsely detected features in
the live-scan segment randomly occurring at valid feature locations.

And p,,,, the probability that there arg features in segment 2, is given as:

Me =N, & Niq Ne— N = Nig
— |:| ! |:| 1_ ¢ m, E . 20
Pn, [D - Pra (1-psq) q

In Eq. 20,pyq is used instead @k, which was used in Eq. 16.

In Eq. 17, by settinR = 0, pym ris 1, Ny, = 0 thereforen,, = ny, g andngg = ny. In addition, if
Prq IS Set equal t, which was determined in section 5.4.1 then Eq. 17 reduces to Eq. 16. This

situation corresponds to totally unreliable features and a false detection rate which provides the
same feature density as the measured feature density. The result is that segment 2 is equivalent to
an imposter print segment.

If no false detects are allowed, thpg is 0 for Eq. 17, andh, = 0 andngy = 0, thereforen, = n,
=npmr Forthis case, Eq. 19 and Eq. 20 reduce to 1 and the result is:

My
O

0 _
p(ny) = Py = { R™(1-R)"™ ”'“} Eq. 21
' My

m

which is just the probability that, features are reliable given features to start.
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If the reliability is 100%, them,, r=ny, Eq. 18 and Eq. 19 both reduce to 1, and Eq. 20 becomes:

Pn, =

2

[Me—Nq0] N —
0 Dpfdnfd(l—pfd)nc e Eq. 22
O Ny O

which represents the probability ofy falsely detected features in segment 2 given that there are
n, correctly detectedhf = n; + ngy).

Eq. 17, 18, 19, and 20 are used to determine the expected performance of a system. The
parameters such as the number of features enrolled, the accuracy of measurement (feature area),
the feature reliability, and the algorithm efficiency can all be evaluated. The plots in Figure 22

show how variations in the critical system parameters affect performance.
1 ~
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Figure 22.a. Error rate plots for variation in enrolled feature density. The parameters used in this
simulation weren, = 300,R = 0.8 (for FRR ancR = 0 for the FAR plots)p;q = 0.067,n, ranges

from [0,60], andn, is set to 5, 20, or 40. The Equal Error Rate (EER) is 2.43% n;=5,6.2
x 104 for ny = 20, and 3.2 x T for n; = 40.
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Figure 22.b. Variation in feature detection error rate (fingerprint noise level). The parameters used
in this simulation weren, = 300,R = 0.8 (for FRR andR = 0 for the FAR plots)n; = 20,n, ranges

from [0,300], andxq is set to 0.05, 0.2, or 0.4. For a lower detection error rate (cleaner fingerprint

image), an enrolled user will gain access more often (the FRR error rate curve is steeper and more
towards the right). For high detection error rates (noisy images), an imposter will have a higher
feature density and will have a greater chance of gaining access. The Equal Error Rate (EER) is 7.2

x 10 for prq = 0.2, and 9 x 18 for prq = 0.4.
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Figure 22.c. Error rate plots for variation in feature reliability. Agdecreases, the performance of
the system degrades. An FAR plot is shown for comparison of actual system performance as a
function of the feature reliability. The parameters used in this simulation wgre300,n; = 20, pgy

= 0.067,n, ranges from [0,60], anRranges from 0 to 1.0 in 0.1 incremeni= O for the FAR plot).
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Figure 22.d. Resolution or measurement accuracy curves. Parametersfovesn, =300,n; =
20,R=0.8 (for FRR),ptg = 0.067,n, ranges from [0,60]. FoB curves:n, = 200,n; = 20,R=0.8
(for FRR),p¢g = 0.1,n, ranges from [0,60]. Both sets of parameters simulate a comparison of two

segments with the same area and detection error rates.a Teves simulate a system using a
more precise feature position determination and corresponding smaller search area tfan the
curves. Higher resolution will tend to make it more difficult for both a valid user and an imposter to
match (but the EER may be the same as for lower resolution settings) as seen from the curves.
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8. Dependence

The models describing feature position discussed in earlier sections were based on an assumption
of independence between the features (either minutiae or pores). Although this assumption is
attractive because it simplifies calculations, it does not accurately describe actual feature
placement. As alluded to in previous discussions of physiology and pore placement models, the
placement of a feature depends in some way on the relative position of neighboring features.

8.1 Sclove’s Model of Dependence Between Galton Features (Minutiae):

The idea of dependence of minutia placement on the location of other minutiae is not a new one.
In 1979, Stanley Sclove, a member of the Osterburg team, published a paper proposing that
minutia occurrence could be described by a Markov-type model (Sclove, 1979). He asserted that
the presence of minutiae in a given cell is influenced by the presence of minutiae in the adjacent
cells. This study supplanted the model assuming independent cells with one incorporating
dependence between cells.

To summarize Sclove’s theory: Fa 3 cell by 3 cell area, the cell under scrutiny is the center one,
or the fifth in a linear ordering. The number of cells in this ordering containing a Galton feature is
represented bg, the number of adjacencies, which ranges between 0 and 4 (in a linear ordering,
only the cells preceding the fifth cell will affect that cell). For a random ve¥{ajdescribing the

outcome of the!" cell, Sclove’s probability of a set of Galton features is represented as:

P=P[Y(c)=y(c)]P(Y(2)=y(2)[Y(1)=y(1)IPLY(3)=y(3)[¥(2)=y(2),
Y(1)=y(1)]...PY(S)=(O) Y (4)=y(4), Y(3)=¥(3). ¥(2)=y(2), Y (1)=y(D)]. Eq. 23

For simplicity, the four preceding adjacent cgNq1)..Y(4))are referred to as matriX(c), where
the conditional probability of Eq. 23 is reduced to

PLY(c)=y(c)X(c)]. Eq. 24

Assuming that the cells iX(c) exert influence over cetll, the probability of feature occurrence
involves the number of adjacencies,as well as the different types of featurdsijf a cell is
occupied, there are still 12 different event possibilities (using data from Table 1 in the Appendix).
Sclove’s probability of a minutia (or Galton feature) occurrence in a cell is then:

P = [k(Q &logP(0] a)]

12
+ 5 [k(f)logP(f)] —((k(1) + k(2)+ ...+ k(12))logP(E))
f=1
4
+ 3 m(a)logP(E| A= a)
a=1 Eq. 25

where k(0O|a) is the number of empty cells witla adjacenciesk(f) is the number of cells
containing the probability of minutia typke P(E) is the probability of an event occurring, and
m(a) is the number of occupied cells withadjacencies. Sclove found that asthe number of
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adjacencies increases, the probability of the central cell being occupied increases monotonically.
Therefore, clustering of minutiae happens more frequently than uniformly spaced minutia
configurations. Thus is born the concept of dependence among minutiae. This dependence would
be evident in a pdf as a non-uniform distribution, whereas the equally-likely configurations
associated with independence give rise to a uniform pdf.

8.1.1 Dependence of pores: intra-ridge

Although Sclove dealt exclusively with Galton features, his idea of feature dependence can also
be applied to pores, albeit pores are features with properties differing from minutiae. Minutiae,
on one hand, are considered “accidental;” their spatial distribution serves no apparent purpose. In
contrast, pores transfer heat, so they must have a spatial distribution that can support this function.
Whereas minutiae are expected to cluster, pores are expected to be spread out over the finger.

Two events are independent if “the probability of either one is unaffected by the occurrence of the
other,” (Lapin, 1990). An event is the placement of a pore at a given position, thus:

B v (X,y) = &KO)f(Y) Eq. 26
wherefy(x) andf\(y) are the probability density functions of the independent random variables.

If pores were indeed placed independently of each other, what would the frequency distribution of
intra-ridge distances look like? In order to plot such a distribution, a vector of zeroes was used to
represent a one-dimensional “ridge.” 3370 “pores” (ones) were substituted for zeroes at random
intervals along the ridge, simulating a situation where the placement of one pore was entirely
independent of the placement of other pores. The distances between pores was calculated and the
frequency of these distances was plotted (Figure 23).
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Figure 23. Distribution of distance measured between consecutive intra-ridge pores. This data was
simulated using a model for which the pores are assumed to be independent and occurring at a
random position on a one-dimensional axis. Therefore, there is no constraint on the placement of
any particular pore and no influence on the position of a pore from its neighboring pores. The
distribution decreases monotonically with distance, and there are numerous pores that are close
together.

In order to prove that pore placement is a dependent phenomenon, this calculated distance
distribution should be compared to a measurement of actual intra-ridge distances. However, intra-
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ridge positions would have to be measured in the one-dimensional longitudinal direction only.
Unfortunately, the intra-ridge distances obtained in this study were of a two-dimensional nature
and cannot be used justifiably in a comparison.

Had the data been obtained in a manner suitable to comparison, independence could be proven or
disproved by virtue of a chi square analysis. The chi square statistic is defined by Lapin as:

2 - (fIJ—fIJ)2
X ”ZZ fij

wheref; are the actual intra-ridge distance frequencies obtained"ij amd the calculated distance
frequencies.

Eq. 27

The simulated distribution obtained in Figure 23 demonstrates a preponderance of small distances
between pores. If a transverse variation were allowed to be added to the ridges in the analysis
(simulating a two-dimensional process), it is surmised that many of the distance measurements
between pores would increase, thereby changing the shape of the distribution.

Ry R3

Figure 24. Spatial dependencitra-ridge: If the positions of intra-ridge pores were independent
random variables, then their spacing would differ from the regularity observed in real fingerprints.
Inter-ridge: The location of pore  would depend on the location of all the surrounding pores if

pore positions were not independent random variables. p32 depends on the position of p31 and p33
but may also depend on p21, p22, p23 and p41,p42,p43.

Although most of the discussion thus far has concerned pore distribution along a given ridge, the
discussion of dependence bids us to look at the spatial distribution of pores across ridges: In
addition to an expected distance between nearest neighbor intra-ridge pores, there exists also an
expected linear relationship between the inter-ridge pores. As shown in Figures 24 and 25, pores
on adjacent ridges exhibit some degree of alignment. Inherent in this relationship is a linear
deviationA that measures the difference between the expected linear relationship and the actual
pore pattern on the print. If pores were generated independently of each othedangmild

result, and no visible linear pattern would be evident.
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Figure 25. Dependence - pores on adjacent ridges demonstrate a high degree of alignment.

8.2 Degree of alignment of inter-ridge pores
Data from live-scanned fingerprints were examined to study alignment of adjacent pores across

ridges.

Frequency distributions of the alignment between nearest neighbor pores on three

consecutive ridges and three alternating ridges were obtained (where ridges 2 and 4 are skipped).
The degree of alignment may indicate a measure of dependence. The data are presented in Figure
26. Here, the plots for both three consecutive ridges and three alternating ridges are compared to
a simulation in which pores are constrained to occur at random positions in sweat gland units.
The model includes the possibility of empty sweat gland units.
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Figure 26. Frequency of degree of inter-ridge deviations from alignment. These plots demonstrate
that most deviations from alignment are between 0 and 10 pixels (0.22 mm), evincing dependence.

February 10, 1999

42



Roddy and Stosz: Fingerprint Features - Statistical Analysis and System Performance Estimates

All three plots show a maximum frequency of occurrence for deviations close to 0. As the degree
of deviation increases, there is a marked decrease in probability of occurrence for all three plots.
However, the plot of frequency of deviations for three alternating ridges follows the simulation
more closely than the plot for three consecutive ridges. This can be attributed to a greater degree
of alignment among pores on three consecutive ridges; the more proximal the ridges, the greater
the degree of alignment between the pores across those ridges.

8.3 Dependence determination: Ridge-independent distributions

The effect of dependence among pores is evident also in the ridge-independent configuration
studies discussed in section 5.4.3.1 and 5.4.3.2. Here, the probability of pore occurrence in a 5
pixel by 5 pixel area was found (the binomial distribution discussed in Section 5.4.1) as well as
the pore density for 20 pixel by 20 pixel area (Figure 27).
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Figure 27. Measured density of pores in a 20 pixel by 20 pixel area. This distribution was obtained
from actual data; the number of pores in a 20x20 pixel area was tallied and the frequencies of the
individual densities was plotted.

If the occurrence of each pore were a phenomenon independent of other pores, the density for a
larger area could be determined by using the data obtained from the binomial probability alone:

(Ppore)# cells with porea;)no poré# cells with no pores. (0_0677¢cells with porefgo_933jicells with no pores

However, when this extrapolation is attempted for a 20 by 20 pixel area, the resulting probability
density function shows a higher incidence of empty cells than was detected in the actual density.
This increase in empty cells is compensated by a reduction in the number of cells that contain one
pore (Figure 28).

The independence assumption does not account for phenomena that determine the actual spatial
distribution of pores; ridge flow is one such factor. Perhaps the ridge flow in a print constricts the
spatial distribution so that there are fewer possible empty cells; this would account for the
disparity between Figure 27 and Figure 28.
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Interestingly enough, when the density of pores in a 40 by 40 pixel area is determined and
compared to an extrapolation from the binomial distribution, the real density is similar to the
extrapolation. It is proposed that the degree to which dependence affects pores is higher for
smaller areas, much like it is greater in an inter-ridge capacity for more proximal ridges.

4x4 five—pixel areas
0.4 T T T

0.35

0.31

Probability
o o
o i o N
[ (9] N [6)]

o
o
a1

0 I H’—‘,—H I I I I

L
0 2 4 6 8 10 12 14 16 18
Number of pores

Figure 28. The binomial distribution discussed in Section 5.4.1 was extrapolated to produce this
plot, which shows a theoretical frequency distribution of pore densities, assuming that pores occur
independently of each other.

9. Conclusion

Recognition errors in automated fingerprint recognition systems, like other biometric systems,
can be grouped into two classifications: false accepts and false rejects. When addressing the
problem of a false accept, the question is: how does one differentiate an authorized user from an
unauthorized user? The uniqueness analyses in this study provide answers to this question:
Given a certain number of pores along a ridge or a number of pores in a constellation, the
probability of someone else having an identical configuration is sufficiently low to preclude a
false accept.

Still, false accepts persist. The value of the uniqueness of a configuration is reduced when using
an automated system, for many parameters which were designed to decrease the number of false
rejects actually increase the probability of a false accept. For example, automated matching
requires accommodation of phenomena such as plasticity and distortion; therefore, parameters
such as search areas are built in to allow a degree of flexibility in feature detection. Thus, the
possibility exists that features in an impostor’s print may be falsely detected as matching features
in an enrolled user’s print.

On the other side of the coin, however, is the question of false rejects. The problem that must be
addressed in this case is: How does one recognize an authorized user as such, regardless of
changes that have occurred since the enrolliment procedure? These changes can include
differences in location, orientation, shape or size of respective features due to distortion or
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plasticity. Errors can occur as a result of the processing and feature detection stage or as a result
of some features being physiologically unreliable.

Performance is defined by these error rates. In this paper, a model for an automated matching

system was developed, which incorporates the parameters determining the error rates. From this
model, performance of a generic automated fingerprint recognition system can be predicted.
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A.1 Glossary

attribute - a sub-feature - the position, shape, and size are attributes of a pore.
authentication - confirmation of proper identity.

dependence- the ability of a feature to affect the attributes of another feature - cellular or
biological dependence may produce a measured dependence of the pore positions.

dermis - the layer of skin directly beneath the epidermis; contains living elements such as sweat
glands, nerves, and blood vessels.

distribution (probability) - the probability density function (pdf) of a random variable.
distribution (spatial) - the way that a set of points is positioned in space or in an image.
dpi - refers to scanning resolution measured in dots (pixels) per inch.

EER - Equal Error Rate: the value at which the FAR and FRR are equal.

epidermis - the outermost layer of skin; acts as a protective layer for the dermis.

FAR - False Accept (imposter) error Rate: fraction of attempts for which the system allows access
to an imposter or invalid user.

FRR - False Reject (valid user) error Rate: fraction of attempts for which a fingerprint system
denies access to a valid user.

feature: a characteristic; pores and minutia points are fingerprint features.
feature area- search area - The area assigned to an individual feature in which no other feature is
assumed to exist. A small area of fingerprint surrounding the feature location in which the features

exact position is not important. Related to resolution and search area.

feature characteristic (sub-feature)- attributes of features such as shape, size, and location for
pores; type, orientation, and position for minutiae.

feature configuration - a feature set for which the specific arrangement of the features within the
area occupied by the set is known.

feature density- the number of features per unit area [features/mm2].

feature position or location - defined as the center of mass of a pore or the center of the ridge at
the point at which it ends (for end points) or branches (for bifurcations).

feature set {a,b,c,...} a group of features associated with a specified area of fingerprint.
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Galton feature - any of a set of 10 distinct fingerprint features which include minutiae (branches
and ends) as well as special ridge structures such as ridge islands, dots, bridges, spurs, enclosures,
double bifurcations, deltas, and trifurcations.

homogeneousuniformly spatially distributed - the density of pores (or sweat glands) is constant
over the entire area of print

identification: a scenario in which the identity of the user who presents a live-scan image to the
system is unknown. The system must determine who the unknown user is from a database of valid
users.

inked fingerprint - an image of the fingerprint resulting from applying ink to the surface of the
finger and then rolling the finger on paper - results in a rolled fingerprint impression unlike a live-
scan fingerprint.

inter-ridge pores - pores which are not on the same ridge.

intra-ridge pores - pores which are on the same ridge.

intra-ridge separation - measured value of separation between sequential pores on the same
ridge.

intra-ridge separation (adjusted)- intra-ridge separation corrected for missing pores.

isotropic - having the same properties independent of direction or orientation.

latent - the fingerprint impression left on an object’s surface resulting from contact with a finger.
live-scan- an image of the fingerprint acquired using an electronic scanner for the purpose of
real-time fingerprint processing or matching. A live-scan represents a pressed finger as opposed to

a rolled print.

match - of a feature: a feature represented in the enrolled template (or fingerprint) corresponds to
a feature from the live-scan fingerprint.

mismatch - of a feature: a feature represented in the enrolled template (or fingerprint) which does
not correspond to a feature from the live-scan fingerprint, or a feature from the live-scan print
which does not correspond to a feature in the enrolled template.

minutia - a ridge structure which differs from the usual (normal) continuous and non-diverging
flow, examples are ridge branches (bifurcations) and ridge ends.

MXxN pixels - an area of fingerprint M pixels in width and N pixels in height.

measurement accuracy- the accuracy of determined locations of features; higher resolution
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allows more precise estimation of an actual feature’s position, shape, and size.

performance: measure of FRR and FAR for a given system; match time and cost should also be
considered but are not addressed in this paper.

pixel - can be used as a unit of length or area; magnitude is established by the magnification of the
input image and the dimensions of the image produced by the framegrabber.

pore - opening of a sweat gland which is visible on the surface of the finger ridges.
ppi - refers to scanning resolution measured in pixels per inch of fingerprint.

ppmm - refers to scanning resolution measured in pixels per millimeter of fingerprint.
regular distribution - uniform distribution of objects in space.

reliability - inherent - (key to FRR), the probability that a given feature (a pore for example) will
be visible in different images of the same fingerprint.

reliability - algorithm : (key to FRR), the probability that the algorithm will correctly detect a
visible (real) fingerprint feature.

resolution of database images 1100 ppi where 1 pixel corresponds to 23.1 microns.

resolution - scanning- number of samples per unit length (or area), determined by the degree of
magnification of the fingerprint image on the CCD sensor.

resolution - sensor- defined as the number of active pixels on the CCD imaging sensor in a video
camera (sometimes quoted without regard to CCD dimensions).

scanned area the area of fingerprint incident on the active area of the CCD sensor device and
represented in the fingerprint image.

search area- a small area in which a feature is searched for; designed to account for detected

feature position deviations due to noise, plasticity, distortion, or processing variations. Increasing

the search area is equivalent to reducing the scanning resolution reducing the accuracy of
detection of the feature position.

sub-feature - an attribute of a fingerprint feature.

subcutaneous layer the layer of skin beneath the dermis; contains fat.

sweat gland- a structure within the dermis that produces sweat. Composed of a coil, which

secretes the sweat, and a duct, which carries sweat to the surface. The duct opening on the skin
surface comprises a pore.
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template - a set of data which is extracted from a fingerprint and then used to represent that finger.
Fingerprints are matched against templates or templates are matched against templates.

uniform distribution - defining the position of a feature as a random variable, a uniform pdf
means that the feature has an equally likely probability of occurring anywhere in image (flat 2-D
pdfin x,y). In one model of pore distribution, if there are N pores per fingerprint, then each pore’s
position is assumed to be a uniformly distributed random variable.

uniform distribution of objects - a homogeneous spatial distribution.

uniqueness- (key to FAR) probability of occurrence of a configuration of features.

verification: a scenario in which a user claims an identity (enters a PIN) and the system then

authenticates the user’s claim by matching his live-scan print against the template corresponding
to his claimed identity.
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A.2 Vital statistics of fingerprint features

Pore density
There are approximately 2700 to 3350 pores/in2 (4.19 to 5.19 pores/mm2)

Intra-ridge pore density
The average separation of pores on a ridge is 0.39 om0 (207mm).
There are 25.6 pores/cm of ridge on average.

Features
Placement:
Pores are found on the ridge only.
The pore’s exact position on the ridge is random.
The position is defined as the center of mass of the pore.

Size:
Pores are generally less than 220 across.
The average diameter of a pore is @9 assuming a circular pore shape.
The fraction of print area occupied by pores is 3.9%.

Shape:
The shape of each pore is unique.
There is a lot of variation in the general shape of pores ranging from square to circular.

Pore reliability
Pore reliability is a function of the sub-feature type (position, shape, and size), capture
method, and skin condition.

Ridge width
The average width of a ridge is 0.48 mm for males and shorter for females.

Galton feature density
The density of Galton features is approximately 0.234 features/mm

Minutia (branch and end point) density
The density of minutia is approximately 0.241 minutiaefmm

Ridge (Galton) feature placement
The placement of Galton features is random.

Ridge (Galton) feature reliability
The reliability of Galton features is relatively high and depends on the quality of the print,
skin condition, and capture method. With respect to minutiae, sometimes it is difficult to
distinguish between ridge bifurcations and ends.

February 10, 1999 51



Roddy and Stosz: Fingerprint Features - Statistical Analysis and System Performance Estimates

A.3 Osterburg

Table 1: Osterburg probability of feature occurrence

Feature Frequency Probability of Occurrence
Empty cell 6584 0.766
End point 715 0.0832
Branch point 328 0.0382
Island 152 0.0177
Bridge 105 0.0122
Spur 64 0.00745
Dot 130 0.0151
Lake 55 0.00640
Trifurcation 5 0.000582
Double bifurcation 12 0.00140
Delta 17 0.00198
Broken ridge 119 0.0139
Other multiple occurrences 305 0.0355
Total 8591 1.00
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A.4 Resolution and intra-ridge pore configurations

Table 2: Probabilistic values of intra-ridge pore configurations

pore r=1 pix r=2 pix r=3 pix r=4 pix r=5 pix r=6 pix r=7 pix
probability= (max probability at f)umber of pores
2 ]0.0645 0.1246 0.1848 0.2444 0.2879 0.3450 0.3839
3 [0.0042 0.0155 0.0341 0.0597 0.0829 0.1190 0.1474
4 | 2.6821e-04 | 0.0019 0.0063 0.0146 0.0239 0.0411 0.0566
5 |1.7297e-05 | 2.4123e-04| 0.0012 0.0036 0.0069 0.0142 0.0217
6 |1.1155e-06 | 3.0064e-05| 2.1531e-04  8.7115e-04  0.0020 0.0049 0.0083
7 | 7.1936e-08 | 3.7467e-06| 3.978le-0p 2.1287e-04 5.6934er04  0.0017 0.0032
8 |4.6391e-09 | 4.6694e-07( 7.3500e-06 5.2016e-05 1.6391ef04  5.8215p-04  0.001p
9 |2.9918e-10 | 5.8192e-08| 1.3580e-06  1.2710e-05 4.7187et05  2.0086p-04  4.722Be-04
10 | 1.9294e-11 | 7.2523e-09| 2.5091e-0f 3.1058e-06  1.3585e-05  6.9304e-05  1.813[le-04
11 | 1.2443e-12 | 9.0382e-10| 4.6358e-08  7.5891e-07  3.9110e-06 2.3912e-05  6.9614e-05
12 | 8.0242e-14 | 1.1264e-10| 8.5652e-09  1.8544e-07  1.1259e-06  8.2505e-06  2.672Be-05
13 | 5.1748e-15 | 1.4038e-11| 1.5825e-09 4.5314e-08  3.2415e-07 2.8467p-06  1.026Re-05
14 | 3.3372e-16 | 1.7495e-12| 2.9239e-10 1.1073e-08  9.3319e-08  9.8221e-07  3.940[le-06
15 | 2.1522e-17 | 2.1803e-13| 5.4022e-11  2.7056e-09  2.6866e-08  3.3890e-07  1.512Be-06
16 | 1.3879e-18 | 2.7172e-14| 9.9813e-12  6.6113e-10  7.7344e-09  1.1693e-07  5.808Re-07
17 | 8.9507e-20 | 3.3863e-15| 1.8442e-12  1.6155e-10  2.2267e-09  4.0345e-08  2.230{le-07
18 | 5.7723e-21 | 4.2203e-16| 3.4073e-13  3.9475e-11  6.4103e-10 1.3920e-08  8.562Re-08
19 | 3.7225e-22 | 5.2595e-17| 6.2954e-14  9.6459e-12  1.8455e-10 4.8030e-09  3.2874e-08
20 | 2.4007e-23 | 6.5547e-18| 1.1632e-14  2.3570e-12  5.3130e-11  1.6572e-09  1.262Pe-08
21 | 1.5482e-24 | 8.1689e-19| 2.1491e-1p  5.7594e-13  1.5296e-11  5.7179e-10  4.846{le-09
22 [9.9841e-26 | 1.0181e-19| 3.9706e-16  1.4073e-13  4.4035e-12  1.9729e-10  1.8606e-09
23 | 6.4388e-27 | 1.2688e-20| 7.3362e-1f  3.4389%e-14 1.2677e-12  6.8071e-11  7.143PBe-10
24 | 4.1523e-28 | 1.5812e-21| 1.3555e-1fy  8.4030e-15  3.6497e-13  2.3487e-11  2.742Pe-10
25 | 2.6778e-29 | 1.9706e-22| 2.5044e-18 2.0533e-15 1.0507e-13  8.1037e-12  1.053fle-10
26 | 1.7269e-30 | 2.4559e-23| 4.6271e-19 5.0174e-16  3.0249e-14  2.7961e-12  4.043de-11
27 | 1.1137e-31 | 3.0606e-24| 8.5492e-20  1.2260e-16  8.7084e-15  9.6474e-13  1.5524e-11
28 | 7.1822e-33 | 3.8143e-25| 1.5796e-20  2.9958e-17 2.5071erl5  3.3287e-13  5.960pe-12
29 |4.6318e-34 | 4.7537e-26| 2.9184e-2]1  7.3203e-18  7.2176e-16  1.1485e-13  2.288be-12
30 | 2.9870e-35 | 5.9243e-27| 5.3921e-2P  1.7888e-18 2.0779er16  3.9627e-14  8.786Pe-13
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A.5 Ridge-independent pore configurations

By assuming that pores occur independently of each other, in a way similar to the treatment of
minutiae, the probability of a configuration of pores can be calculated. For a given area of
fingerprint, and a defined “cell size,” there will be N cells or grid divisions in the print. In each
cell, there can be either one pore or no pores present. For an area of print about 0.46 mm x 0.46
mm, the number of cells is 16. The number of configurations possible (using n pores), the
probability of a given configuration of n pores, and the probability of n pores in the total analysis
area are provided in Table 3.

Table 3: Calculated probability of n pores occurring in a 4x4 grid area

# Pores # ggﬁzty # configyrations Cg?;‘é’:gﬁ;; n p(;if;r?esgzgnz)O:ZC

n m combination (N n) nm m
p"q (N n)d'q

0 16 1.00000e+00 3.29690e-01 3.29690e-01
1 15 1.60000e+01 2.36755e-02 3.78808e-01
2 14 1.20000e+02 1.70017e-03 2.04021e-01
3 13 5.60000e+02 1.22092e-04 6.83713e-02
4 12 1.82000e+03 8.76756e-06 1.59570e-02
5 11 4.36800e+03 6.29611e-07 2.75014e-03
6 10 8.00800e+03 4.52132e-08 3.62067e-04]
7 9 1.14400e+04 3.24682e-09 3.71436e-05
8 8 1.28700e+04 2.33159e-10 3.00075e-06
9 7 1.14400e+04 1.67434e-11 1.91545e-07
10 6 8.00800e+03 1.20237e-12 9.62857e-09
11 5 4.36800e+03 8.63438e-14 3.77150e-10
12 4 1.82000e+03 6.20046e-15 1.12848e-11
13 3 5.60000e+02 4.45264e-16 2.49348e-13
14 2 1.20000e+02 3.19750e-17 3.83700e-15
15 1 1.60000e+01 2.29617e-18 3.67387e-17
16 0 1.00000e+00 1.64891e-19 1.64891e-19

Each grid is of area 5x5 pixeldl = 16, total number of grids. Binomial distribution: P(pore in cell)
=p =0.067, P(cell empty) = g = 0.933.

For an area of print about 0.92 mm x 0.92 mm, the number of cells is 64. The number of
configurations possible (using n pores), the probability of a given configuration of n pores, and the
probability of n pores in the total analysis area are provided in Table 4. The entries in the tables
are plotted in figure A.5.1 for a more insightful description of the underlying process of
configuration probabilities.
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Table 4: Calculated probability of n pores occurring in an 8x8 grid area

i i configuration n pores in 64x64
# Pores # Empty Celld # COT‘f'gF”a“O”S gure ( P Fy —
combination (N n) probability pixel region) =
n m N~M m
pq (N n)p'q
0 64 1.00000e+00 1.18148e-02 1.18148e-02
1 63 6.400006+01 8.484356-04 5.429986-02
2 62 2.016006+03 6.092726-05 1.22829e-01
3 51 7.166406+04 4.375276-06 1.822916-01
q 50 6.353766+05 3.14194e-07 1.996316-01
5 59 7.624516+06 2.056276-08 1.72030e-01
3 58 7.497446+07 1.620266-00 1.214786-01
7 57 6.212166+08 1.163536-10 7.028036-02
3 56 4.42617e+09 8.355466-12 3.608276-02
9 55 2.75406e+10 6.00017e-13 1.65248e-02
10 54 1.514736+11 4.30880e-14 6.526686-03
11 53 7.435966+11 3.004216-15 2.300846-03
12 52 3.08421e+12 2.222006-16 7.297516-04
13 51 1.313696+13 1.595646-17 2.096186-04
14 50 4.78557e+13 1.145856-18 5.483576-05
15 49 1.59519e+14 8.22854e-20 1.31261e-05
16 a3 4.88527e+14 5.909026-21 2.886726-06
17 a7 1.379376+15 424335622 5.853156-07
18 46 3.60169e+15 3.04721e-23 1.09751e-07
19 45 8.71988e+15 2.18824e-24 1.90812e-08
20 a7 1.061976+16 1571416-25 3.083066-09
21 a3 7.110806+16 1.128456-26 7.638826-10
22 a2 8.03474e+16 8.103546-28 6.510996-11
23 a1 1.467216+17 5.819266-29 §.538106-12
24 40 2.50649e+17 4.17889e-30 1.04744e-12
75 39 7.01039e+17 3.000926-31 1.203486-13
26 38 6.015586+17 2.155006-32 1.296366-14
27 37 8.46637e+17 1.54754e-33 1.31020e-15
28 36 1.11877e+18 1.11131e-34 1.24330e-16
29 35 1.388826+18 7.980446-36 1.108346-17
30 34 1.620296+18 5.730866-37 9.285656-10
31 33 1.77709e+18 4.11541e-38 7.31345e-20
32 32 1.832626+18 2.955336-39 5.416016-21
33 31 1.777096+18 2.122266-40 3.771456-22
34 30 1.62029e+18 1.52403e-41 2.46936e-23
35 29 1.388826+18 1.094426-42 1.519966-24
36 28 1.118776+18 7.850216-44 8.792656-26
37 27 8.46637e+17 5.64381e-45 4.77825e-27
38 26 6.015586+17 4.052896-46 2.438056-28
39 25 4.01039e+17 2.91044e-47 1.16720e-29
40 24 2.50649e+17 2.090036-48 5.238636-31
a1 23 1.467216+17 1.500886-49 2.202116-32
a2 22 8.034746+16 1.077806-50 8.650846-34
a3 21 4.11080e+16 7.739826-52 3.16169e-35
a7 20 1.061976+16 5.558076-53 1.090486-36
45 19 8.71988e+15 3.99133e-54 3.48039e-38
a6 18 3.60169e+15 2.866236-55 1.032336-39
a7 17 1.379376+15 2.058286-56 2.839126-41
48 16 4.88527e+14 1.47808e-57 7.22080e-43
49 15 1.59519e+14 1.06143e-58 1.69318e-44
50 14 4.78557e+13 7.622256-60 3.647686-46
51 13 1.31369e+13 5.47364e-61 7.19064e-48
52 12 3.08421e+12 3.930706-62 1.290926-49
53 11 7.435066+11 2.822696-63 2.098946-51
54 10 1.51473e+11 2.02701e-64 3.07038e-53
55 9 2.754066+10 1.455626-65 4.00887e-55
56 8 4.42617e+09 1.045306-66 4.626686-57
57 7 6.21216e+08 7.50646e-68 4.66314e-59
58 6 7.49744e+07 5.39049e-69 4.04149e-61
59 5 7.624516+06 3.870996-70 2.951446-63
60 4 6.35376e+05 2.77981e-71 1.76622e-65
51 3 4.166406+04 1.996226-72 8.317046-68
52 2 2.016006+03 1.43351e-73 2.889966-70
63 1 6.40000e+01 1.02942e-74 6.58831e-73
54 0 1.000006+00 7.392436-76 7.392436-76

Each grid is of 5x5 pixelsN = 64, total number of grids. Binomial distribution: P(pore in cell) = p
=0.067, P(cell empty) = q = 0.933.
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Figure A.5.1.Figures relate to a 40x40 pixel area divided into 64 grids of area 5x5 pixels each. For
this situation, the probability that a grid contains one pore is 0.067 and the probability that the grid
is empty is 0.933. Figure A is a plot of the number of possible configurations of pores as a function
of the total number of pores. Figure B is a plot of the probability of a particular configuration of n

pores. Figure C is a plot of A multiplied by B, which is the probability of a given number of pores,
n, occurring inside the 40x40 pixel area (binomial distribution).
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A.6 Size of Pores

The size of an individual pore may vary from one scan to the next leading to a relatively unreliable
pore sub-feature. In addition, there is a large variation in the size of pores between individuals. In
some cases, the range of pore sizes for different prints of the same finger will vary significantly.
Figure A.6.1.A shows the general trend of a decreasing number of pores as pore size increases.
The caption in Figure A.6.1 provides details of the nature of pore size.
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Figure A.6.1. Distribution of the area of pores (measured in units of pixels, where the resolution
was 1100 pixels/inch and 1 pixel has dimensions gk 23.1um). For plots A and B no pores
smaller than 3 pixels in area were allowed in order to reduce noise effects. Pores were extracted and
measured automatically. Figure A represents 40 images (13,197 porgswithi.4,0 = 13.6, max

= 141). Figure B shows the variation in pore area between three different people’s fingers: small
pores 1 = 10.2,0 = 7.3), medium poreg(=18.8,0 = 11.0), and large poregi (= 35.4,0 = 19.6).

Figure C demonstrates variation in the distribution of pore sizes for different live-scan images of
the same finger (reliability of pore size): plot of size for 10 images together 11.0,0 = 9.2),
live-scan when pores are relatively large=(14.8,0 = 10.2), distribution when pores are relatively
small (1 = 8.4,0 = 6.7).
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A.7 Tables and images of reliability of pores

Table 5: Pore reliability for various parameters

Print Type Detection Size Shape

latent Variable - depends on | Variable Variable
surface on which latent
is found and method of
latent extraction

inked Good - pores can fill in| Best - Inked impression Variable - bleeding of
if too much ink is used | should provide accurate¢ ink can cause problems
representation of size of
pore

live-scan Best - pores canfill in if Variable - what is seen | Variable - inherent vari-
the finger is oily or wet.| in the live-scan image | ability of pore shape -
Pores may not show up depends on the condi- | again mostly due to

for very dry fingers. tion of the finger (oily, | amount of moisture on
dry, neutral) finger

Table 6: Observed inherent reliability of pores

Print Vis. Size: Absolute Size: Relative Shape Clarity Quality Density
[0,1] Range [0,1] [0,1] [0,1] [0,1] [1,5] [0,1] [1,5]
Small Med. Large Small Med. Large Cleal Shadl. Fuzgy Imege Prnt
W52 .93 .48 .52 0 .82 .18 0 .85 .56 .33 11 4.24 .0024 3.9
L253 .98 .70 .30 0 .62 .38 0 .94 .96 .02 .02 4.09 .0493 3.59
W254 .75 .62 .38 0 .62 .36 2 91 71 17 .12 3.48 195 2.84
L92 .94 13 .83 .04 .28 71 0 - .57 .37 .07 3.2 .18p 3.2
L19 .95 .08 .60 .33 17 71 12 - .37 .46 17 2.69 128 2.8
A26 .79 175 .65 175 175 .635 .19 - .30 .40 .3q 2.58 .245 2.39
L133 1.00 .14 .86 0 .16 .84 0 .95 74 21 .05 3.79 .035 3.74
L255 .85 .73 .27 0 .79 .18 0 .85 .79 .18 .03 3.82 .0518 3.44
L112 91 .65 .35 0 .65 .35 0 1.00 71 .23 .06 3.59 .0874 2.79
W259 1.00 .83 17 0 .83 17 0 1.00 1.04 0 0 3.88 .0372 3.72

Visibility is the fraction of instances in which a given pore was detectable by eye. Absolute size is
the observed size of a pore. Relative size is the size of the pore in relation to all other pores in that
image. Shape - fraction of occurrences for which the pore’s shape is consistent. For clarity, clear
means that the pore is in focus and high contrast; fuzzy denotes an out of focus pore. Shadowy
describes pore’s which were mostly clear but parts were fuzzy. Image quality (range [1,5] where 5
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is high quality) is determined by the amount of noise and degradation in the image, whereas print
quality (range [-1,1], wet-neutral-dry) is a measure of the condition of the skin. Density is the
relative number of pores per image.

Table 7: Algorithm reliability

Missed Detect False Detect
Quality| # pores Proc, Flow NN| nonisql. flow- 2as1l mid- unknown bridge noise washed
nonisol valley out

Excel. (486 5.8 .62 2.3 1.6 1.0 21 41 .2] A1 21 20
Excel. (407 4.1 0 .25 41 A1 .25 .98 0 0 .98 0
good (504 4 4.2 2 2.2 .79 0 0 2 0 4 2]
Good (427 A7 4.0 A7 2.8 A7 0 0 0 0 0 A7
OK 286 5.9 35 0 25 .35 0 0 0 0 7 0
OK 489 5.5 3.1 .61 1.2 .2 0 2 0 0 0 0
Poor |352 3.4 4.3 .85 1.4 0 0 1.1 0 0 1t 0
Poor |411 141 4.4 0 4.1 2.4 0 0 0 0 4P 0

The percentage of algorithm detection errors attributable to various causes in eight prints of
varying quality. The total error rate (missed detects plus false detects) is the sum of each row.
Quiality is the image quality. # pores is the number of true pores detected in the image accounting
for missed and false detected pores (errors). Processing represents the percentage of pores
erroneously discarded during the process of converting the image from gray level to binary. Flow
represents the percentage of pores which are so large that they appear as a break in the normal
flow of the ridge. NN is the percentage of close but separated pores for which only one pore is
detected. Non-isolated is the percentage of pores on the edge of a ridge which are not detected.
Flow non-isolated is the percentage of missed detected pores which occur on the center of a ridge
but appear to touch the edge of the ridge because of noise. 2 as 1 represents the number of pairs of
connected pores incorrectly detected as a single pore. Mid-valley is the percentage of instances in
which the algorithm falsely detected a pore in the middle of a valley. Bridge is the percentage of
falsely detected pores occurring at breaks in a ridge. Noise represents the percentage of instances
in which noise was classified as a pore. Washed out represents a different noise process which
causes low contrast areas in the image.
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Figure A.7.1. Reliability of pores. The fingerprints in figure A.7.1, have a very low detectable pore density.
For these prints, the use of poroscopy may not be reliakd@db are images of the same finger showing a
large disparity in pore density. Figure is a print which also has a very low pore density, although the

algorithm was able to find at least 84 pores.
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